
§1IFLL L&Ia UNUMITED --8851
BRI08Lm

0-

.. * RSRE
MEMORANDUM No. 4222

ROYAL SIGNALS & RADAR
ESTABLISHMENT

A SECURITY MODEL AND ITS IMPLEMENTATION

Author. S R Wbsenmn & C L Harrold

040

PROCUREMENT EXECUTIVE,
o MINISTRY OF DEFENCE,

2 ~R SRE MALVERN,
0WORCS. D I

z
4c ELECTE

0 SDEC 2 719880
2~ H

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 42Z2

Title: A Security Model and its Implementation

Author: S R Wiseman & C L Harrold

Date: September 1988

SUMMARY

A new security model is proposed which allows the notions of
confidentiality and integrity to be expressed in one coherent
framework. Confidentiality is taken to be solely concerned with
the observation of classified information, while separation of
duty is employed as the technique for assuring the integrity of
the security labels which are the basis of confidentiality.
Discretionary access control is modelled by access control lists
whose integrity is also provided by separation of duty controls.
The specificaton of a simple system is 9iven as an example of
the techniques and methods for implementation are discussed.

Copyright

Controller HMSO London
1988

Contents
1. Introduction

Z. The Model

3. pSERCUS: An Example System

4. Implementation & Assurance

S. Specification of PSERCUS

6. Conclusions

References

2 Notation

Accssion For

NTIS GPA&I
DTIC TAI4J

Jusat . :,to:

By
D1, .trJ lut i Or/

Aval iud/or
-Dist Spoclal

1. Introduction

This paper describes how the model of security described in [Terry&WisemanBB
can be used to implement flexible systems with high assurance using the SMITE
[Wiseman86] secure system. The model was developed because SMITE appeared
to offer more flexible protection than is required to implement other security
models. In particular SMITE seemed to provide a way of tackling the wider
issues of computer security, such as integrity. However, even though the model
was developed specifically for SMITE it is believed that it is more generally
applicable and, as is shown later, can be implemented on conventional systems.

The modelling approach is basically that of the original Bell-LaPadula paper
[Bell&LaPadula73a], however the notion of confidentiality, the axioms and
techniques used are profoundly different from their later papers
([Bell&LaPadula73b], [Bell?4] & [Bell&LaPadula76]) and as enshrined in the
*orange book".

The SMITE approach has been strongly influenced by the concept of separation
of duty presented by [Clark&Wilson87. Clark and Wilson argued that maintaining
consistency between the internal system state and the external environment
was the fundamental mechanism for upholding a system's integrity, and that
this is achieved by employing separation of duty. This paper argues that
separation of duty is more fundamental and, along with confidentiality and
discretionary access control, plays an indispensible part in security.

The approach proposed in this paper aims to cover the whole problem of
security, but with no loss of rigour in its approach to individual aspects, such
as confidentiality or assurance. The approach may therefore seem somewhat
radical, so to avoid any misunderstandings the notions of security will be
developed from scratch. It must be emphasised that if an "Orange Book
reserved word" is used in this paper, its true English meaning is intended.

1. 1 What is Security?

The dictionary defines "security" as "assured freedom from danger, damage
etc.". The security of a system can therefore be defined in these terms by
specifying:

1. which properties of which elements of the system are
important,

2. what protection from which attacks is required,
3. how much assurance is required that such defences are

successful.

The general English sense of this definition is not at odds with either military or
commercial security practice. However in the military and government arena,
attempts to produce a more definitive definition of security have emphasised a
particular property, confidentiality, as being of paramount importance.

The dictionary definition of "confidential" is "given in confidence; secret;
private" and "confidence" is defined as a "feeling of trust in a person or thins"
and "secret" as "kept hidden or separate from the knowledge of others". Thus
confidentiality is about the knowledge of things and the distribution of that
knowledge amongst individuals.

The aspect of confidentiality which says that things are kept secret and
private is easily stated and can be implemented by ensuring that things are
discrete and attributed to just one individual. The assurance of such an
isolation policy can be very high because it simply says that if you want
something done in such a way that no one else knows about it, you must do it
yourself.

Obviously such an isolation policy is not practical, because it must be possible
for one to delegate tasks, thus it must be possible to distribute knowledge
amongst individuals "in confidence". This can be implemented by extending the
isolation policy in the following way. If things are isolated and are secret or
private, that is known to just one individual, and that individual can establish a
basis of trust in some other individual then the private thing may be passed on.

1 Introduction

A general confidentiality policy therefore requires that things are isolated and
attributable to individuals, and states the means by which an individual can
come to trust that others do not pass on or leak the secrets given to them.

While military computer security is oriented towards confidentiality, much
current commercial security is oriented towards another particular property:
integrity. The dictionary defines integrity to be "free from damage, injury etc;
valid, logical or justifiable". This adequately describes the facet of security
which requires the system to have "desirable" properties, such as that things
are undamaged and valid.

The integrity requirement can be easily fulfilled, with high assurance, by a
policy which states "if you want it done right then do it yourself". This is
similar to the isolation approach to confidentiality and is similarly impractical.
Thus a general integrity policy requires that things are isolated and attributed
to an individual and lays down a basis for establishing trust in others that they
do not damage or invalidate things given to them.

1 .2 Establishing Trust in Individuals

While high assurance confidentiality and integrity are provided by a policy of
"doing it yourself", in practice it is necessary to delegate tasks and share
things and knowledge. For this it is necessary to establish trust in individuals.
This is often done by "investigating" individuals to ensure that they have no
inclination to engage in activities which are prejudicial to the tasks and
information given to them. If the individuals prove to be acceptable they are
given a certificate (perhaps in the form of a clearance or pass) and are
appraised of the procedures and properties that they must follow and uphold.

For confidentiality individuals are required to label data correctly and only
pass information to those individuals who are cleared and have a need to know.
For integrity individuals must not defraud or sabotage the company or allow
others to do so.

This approach depends on the cooperation of all individuals to uphold the
common aim of the policy, which assumes they all share the same objectives.
However the assurance that this is true is only as good as the assurance that
the investigation of individuals was accurate and remains valid. This is unlikely
to be good enough because such checks are fallible and an individual's
motivation may change. In any case mistakes and oversights are bound to occur
when individuals cooperate to carry out complex tasks. The system must
therefore be arranged to give additional assurance by making it as difficult as
possible to violate the policy. That is the actions of the individuals must be
controlled.

Obviously if every action of the individuals is controlled the system is secure
because the job is effectively no longer delegated, but this is impractical. The
system must therefore leave individuals a degree of discretjn in their actions,
but seek to limit the damage caused by an errant or subverted individual. This
loose control of individuals, along with a means of labelling the degree to which
individuals share objectives for the uncontrolled behaviour, forms the basis of
trust which allows tasks to be delegated with a high assurance that the system
remains secure.

1.3 Individual's Motivation

In this discussion we take the owners of the system to be a government or
company who delegate tasks to individual citizens or employees, yet require
that the interests of the corporate body are protected. Those whose interests
are being protected and those who may subvert them may be drawn from the
same population, eg. the citizens of a country, or from disjoint populations, eg
the shareholders and employees of a company.

For a system involving sensitive information, but which does not cover official
secrets, background checks to assess an individual's loyalty may be considered
unacceptable because of concerns for individual privacy,civil rights issues and,
not least, expense. However, Clark and Wilson have shown that the same goal is
achieved in the commercial world, without background checks, by exploiting
differences in the motivation of individuals.

Introduction 2

For example, the highly paid manager of a bank will not collude with lowly paid
counter clerks in a petty fraud. Thus it suffices to ensure that transactions
made by clerks require a final counter signature from the manager. Major fraud
by the manager alone is prevented because the bank does not allow the manager
to carry out basic transactions. The manager and a clerk are unlikely to
collude to perpetrate a major fraud because of the paradoxical motivation of
the clerks not to cooperate, perhaps because "its always the little guy who
carries the can".

This notion of separation of duties amongst individuals gives the added
assurance that a task will be carried out without any collusion to violate the
policy. However it is only capable of ensuring the integrity of tasks because it
only takes one subversive individual, or a mistake, to compromise
confidentiality. Thus the more individuals who posses a secret the greater the
likelihood that confidentiality will be compromised, but conversely for integrity
the more individuals who must be involved in completing a task the lower the
chances of unnoticed mistakes or collusion.

This divergence of properties between confidentiality and integrity does not in
practice present a problem as, when total security is considered, the two
aspects are played off against each other.

1.4 Total Security

In a system which includes confidentiality controls, it is necessary to assume
the worst of the individuals who produce and label information. That is new
information must be labelled with the clearance of the individual who produced
it. This, of course, causes data to be over classified, which leads to a
requirement for altering the classification of data. This need also arises
because, if the system is viewed as part of an organisation, classifications
need to be changed to reflect changes in the environment. Effectively the
system must allow individuals to alter the controls that limit the activities of
individuals. There is obviously a requirement for maintaining the integrity of
these controls is the sense that an inappropriate or fraudulent change is not
made. In other words integrity control is a prerequisite for implementing
confidentiality control in practice.

To establish a suitable basis of trust for confidentiality and integrity, the
system must ensure that each entity manipulated by individuals is attributed
with a classfication and that each request indicates the identities of the users
responsible for it. Confidentiality insists that in order to observe the contents
of an entity in the system, the clearances of the individuals making the request
must dominate the classification of the entity. Integrity says a modification
may only occur if enough individuals wish it to occur.

A third area of security, which can be used to enforce a finer granularity of
protection than straight separation of duty, can be provided. The use of this is
left to the individuals' discretion to use as they see fit, and so is usually
called discretionary access control, though this does not imply that it is not
enforced by the system.

Discretionary access control is simply the notion of attaching to each entity a
list of those individuals who are allowed to access them, with an indication of
what operations those individuals may perform. When an entity is created the
list contains only the creator's identity, which prevents anyone else from
accessing it. Those who wish to risk the threats of sharing access to their
entities may do so by extending the access control list, but they are at least
safe in the knowledge that the system's confidentiality and integrity
constraints will limit their risk.

For example, separation of duty in the bank example ensures that transactions
require two different signatures. However to ensure that it is the manager who
provides the counter signature, and not just another clerk, access control
lists can be used. This is, therefore, an application specific constraint placed
above the system policy of separation of duty.

1. 5 Summary

The notion of security that will be modelled therefore comprises three parts;
confidentiality, integrity and discretionary access control. However these
aspects do not stand alone. In practice users must be able to manipL'ate
security labels and so confidentiality relies upon the label's integrity. The
principle of separation of duty is used to provide such integrity, but in practice
it must be -elaxed. It is then necessary to utilise discretionary access control
or confidentiality to provide assurance that integrity is not lost.

Fortunately this recursive spiral does not 9o on forever, because ultimately
some controls are the responsibility of the system owner. For example a
government is responsible for the procedures which concern giving clearances to
individuals and will incorporate in them the necessary separation of duty
controls. These, by definition, are sufficient.

Introduction

2. The Model

2. 1 The Model of Execution

The model is based on a simple state machine and thus consists of a definition
of the state and a definition of the transition rules. The state is modelled as a
relation between abstract sets of entities and attributes. Entities represent
the active and passive components of the computer system which are visible to
each other and can be detectably changed by active entities. Attributes
represent immutable components which are only visible to some subset of the
entities.

For example, in a bare machine process shells and memory segments would be
active and passive entities and integer values would be attributes. The relation
between entities and attributes would model integers being stored in memory
locations and registers. Note that integers do not change. Assignment simply
relates a location to a different integer, it does not alter the integer initially
stored in the location.

A more security oriented example is where text and classfications are
attributes, because they do not change, while classified documents are
entities, because their classification may be changed or their text may be
replaced with an amended version.

The formal specification, which is written in 2 [SpiveyBI, begins by introducing
two sets, E and A, to represent entities and attributes. A schema, Vo, which
represents the state of a simple machine is then introduced. This comprises a
relation, F, between entities and attributes.

[E,A)

Vo

F: E* A

The domain of the relation F may not include all entities, modelling the fact
that some entities have not yet been created or have already been destroyed.
Note that this implies that an entity which contains nothing does not exist.
Similarly the range of F may not include all attributes, and this may be viewed
as modelling the fact that not all attributes currently exist in the state.

A request to change the state of the machine, Ro. is considered to originate
from a set of entities, the requestors. The request itself comprises some
state which is essentially the parameters of the request. At this stage nothing
is said about the validity of the request.

Ro

Frequestors : P E
request : Vo

The valid state transitions that the machine can make is given by Wo. This
insists that the entities making the request exist and that the request is a
subset of the current state. The transition will take the machine to a new
state, v', and will output a decision, d!, as to whether the request is
allowed, though the value these take are as yet unspecified.

The Model

D a - "yes", "no" I

r? Ro

d! D
V,V' : V0

r?.requestors c dom v.F
r?.requestors x {}
r?.request.F Q v.F

The request does not restrict which entities may be altered, because the model
assumes that all entities are universally accessible, however it is assumed
that any entity mentioned in the request is "observed", and that no others are.
That is all attributes, not just those mentioned in the request, that are
contained in the entities mentioned in the request are either moved, copied or
used to influence the creation of new attributes. Note that it is possible to
"create" attributes which already exist somewhere else in the state. For
example the integer attribute "4Z" may already exist in some entity, but it can

be created by multiplying 6 and 91 without observing that entity. However if a
created value could also have been observed the model must assume that it has
been observed.

This view allows the interesting situation where an unclassified individual is able
to create attributes which are exactly the same as the contents of a secret
entity though, because the system is secure, without observing the entity. This
is effectively guessing the secret and of course poses no security risk if the
source of the information is properly attributed.

The effect of the request, that is the choice of new state, is governed by
state transition rules of the form Po" These specify the final state, v', after
applying a request, r?, in a state v. In a particular system design, there will
be many such rules, each differing in the constraints it applies to the
parameters and the effect it has. In effect Po is the most general rule
because it places no conditions on the parameters and does not specify the
result. Particular rules will be subsets of Po.

r? : R 0

vv' . Vo

A particular system therefore comprises a collection of rules. This collection
does not necessarily form a set of Po because more than one rule may allow the
same state change with a particular request. This is represented by a bag,
which is effectively a function that gives the number of times an element
occurs in a collection. So a system design is represented by a bag of rules, U.

However for this model of a computer to be of use in modelling secure systems
it is important that the system's behavior is predictable. To this end the set
of rules must be constrained so that only one rule can cause the system to
enter a particular state for each combination of request and initial state.

The schema Transition defines the permitted transitions, that is those valid
transitions which are allowed by the bag of rules. It also implies that at most
one rule can apply to each permitted transition. Effectively Transitiono is the
set of valid transitions where exactly one rule applies and some state change
occurs or no rules apply and nothing changes.

*tarithmetic courtesy of The Hitch Hikers Guide to the Galaxy
Th... l a d' aL.] €

Transit iono

Wo
U : bag Po

w(rule) = 1 A d! = "yes"
V
u(rule) = 0 A d' = "no" A rule.v = rule.v'

where
rule : poI rule.r? = r? A rule.v = v A rule.v' =v'

The behaviour of a particular run of a system is defined by its initial state,
zO, the sequence of inputs (requests) and the set of permitted transitions. A
record of the resulting outputs (decisions) and intermediate states is called an
appearance of the system.

Appearance0

permitted : P Transition o
r : seq Ro
d : seq D
v : seq Vo
zO Vo

#r = #d = #v

Un N I S n S #r
3 t permitted .

t.r? = r(n) A t.d! = d(n) A t.v = v(n-1) A t.v' = v(n)

3 t permitted •
t.r? = r(1) A t.d! = d(1) A t.v = zO A t.v' = v(1)

2.2 Modelling a Secure System

The description given in the previous section is a model of computer systems in
general. To model the approach to security described in the introduction it is
necessary to refine the components of the state relation, F. It is necessary to
distinguish certain classes of attributes, such as classifications and
identities, and to add structure to the state relation, for example to identify
those parts which represent an entity's classification.

The set CLASS is a subset of the attributes which represent both
classifications and clearances. These form the basis of trust which allows the
system's owners to rely on confidentiality controls to restrict the behaviour of
the individuals they delegate to operate the system.

CLASS : P A

The set TRUST is a subset of the attributes which designate various degrees of
trust that can be ascribed to active entities, that is those that make transition
requests. The amount of trust placed in an entity depends on the trust in the
individual it acts for and also whether it is a faithful proxy of that individual.
To be a faithful proxy the entity must be directly commanded by the individual
or by other faithful proxies. This is the notion of the trusted path
[Wiseman@t.&.88]. One particular degree of trust is distinguished, untrusted,
which indicates the individual cannot be relied on to uphold the security of the
system or is not using the trusted path.

TRUST :F A
untrusted : TRUST

The set ID is a subset of the attributes which act as unique identifiers for
individuals. This is used to control separation of duty and for discretionary
access control.

ID: P A

Note that the specification does not insist that these are disjoint sets. It may
be possible for a particular system to use the same attribute, an integer for
example, to implement CLASSes and IDs. These would be distinguished by
context arising from the structure imposed on F.

Other attributes, not included in CLASS, TRUST and ID, will be used by
particular implementations as information attributes required to carry out the
application specific tasks.

Parts of the state relation F are distinguished, giving it structure and allowing
components of the state to be examined. This gives a new version of the state
schema specifically for modelling secure systems, Vs .

Vs

F E A

Class E -- CLASS
Id :E -. ID
Trust E TRUST
Acl :E ID

Class U Id U Trust U Acl c F

Class is a partial function giving the classification or clearance of an entity.
Id is a partial function giving the identity of the individual who "owns" the
entity. Active entities are proxies for their "owner". Trust is a partial function
that defines the degree of an entity's trustworthiness. Acl is a relation giving
the identities of individuals who are allowed to observe or modify an entity.

Note that the specification does not insist that these relations and functions
are disjoint, merely that they are each subsets of the total state relation F.
Also, other components of F will be used to represent application specific
information.

From this new version of V new versions of R, W, p, Transition and Appearance
are defined, which are just those using Vs instead of V. Strictly this is a
refinement [organ.t.a.B8] but for conciseness this is left as an intuitive
step.

Classifications must form a lattice in the usual manner, with ? representing
"dominates" and LUB and GLB giving the least upper bound and greatest lower
bound of a set of classifications. The function HIGHER takes a function from
entities to classifications and a classification and returns that set of entities
which the function maps to higher (or equal) classifications. LOWER is similar
and gives the entities dominated by the classification. LUB is also defined to
merge together two entity to classification functions, where the result maps
elements which are in both functions to the least upper bound of their two
classifications and entities in just one are passed through. For conciseness,
the exact specification of these is omitted.

_ : lattice(CLASS)
LUB P I CLASS - CLASS
GLB _ P CLASS -. CLASS
HIGHER _ (E - CLASS)x CLASS -4 P E
LOWER _ (E CLASS)x CLASS -4 P E

.LUB : (E -"CLASS)x (E *oCLASS) -(CE -CLASS

A number of auxilliary definitions are required to make the specification more
readable, though again their exact specifications are omitted. The generic
function RELATES produces the relation which maps each member of the first
set to each member of the second set. The domain restriction operator, 4a, is
defined to give the sub-state which is only concerned with a particular set of
entities and the domain subtraction operator, 4, 9ives the sub-state without
those entities. The subset relation, a, between Vs holds when the components
are subsets. The subtraction operation, \, between Vs gives those elements of
the state which are in the first state but not in the second.

[X,Y]

RELATES _: (P X xP Y) . (X 4# Y

_P E x Vs) -. Vs
S_ (PE x Vs) -4 Vs

_ :V(Vs x Vs E ## A

An additional schema will now be 9iven that defines a number of useful sets of
entities regarding a transition. This will be incorporated into following schemas
making the specification more concise.

_ Trans it ions
t : Transitions

observed, trustworthy, new, changed, accessed, source P E

observed = dom t.r?.request.F
trustworthy = dom(t.v.Trust I {untrusted}
new = dom(t.v'.F) \ dom(t.v.F)
changed = dom(t.v' \ t.v) U dom(t.v \ t.v'
accessed = changed U observed
source = observed U t.r?.requestors

Observed is the set of entities which are observed during a transition. Those
entities who are actin9 on behalf of individuals who are not untrusted and are
using the trusted path are given by trustworthy. Entities which are created are
9iven by new. Entities which either gain or lose attributes, including those
entities that are created or destroyed, are 9iven by changed. Entities which
have been changed or observed are deemed to have been accessed. The source
of influence over the transition is the observed entities and the entities making
the request.

Z.3 The Axioms

Axioms for the three aspects of security, that is confidentiality, separation of
duty and discretionary access control, will now be given separately. It should
be noted that these do not stand alone, and that in isolation they are likely to
run counter to one's intuitive notion of security.

2.3. 1 Confidentiality

Confidentiality is concerned solely with the Class subset of F, which attributes
classifications to observed entities and clearances to the requestors. It is
assumed that all entities in the domain of that subset of the state which forms
the parameters of the request are observed and no others are.

Thus the axiom for confidentiality insists that each requestin9 entity and each
observed entity has a classification, and that the classification of each
requestor dominates the classification of all the observed entities.

9 The Model

ConfidentialityF 6Trans i t ions

source c dom t.v.Class
GLB t.v.Class(t.r?.requestors I a LUB t.v.Class(observed I

This axiom does not preclude a system that contains rules which allow
individuals to either enter secrets and then downgrade them to unclassified or
to copy them to unclassified entities. At first sight this may appear to be
blatantly insecure. However both these examples concern the integrity of the
classification labels attached to entities. This aspect is therefore properly
the concern of separation of duty and not confidentiality.

2.3.2 Separation of Duty

Separation of duty is concerned with the Trust and Id subsets of the state
relation. Requestors act on behalf of individuals and have ascribed to them a
degree of trust which reflects the degree of trust placed in the individuals and
whether they are on the trusted path. The strictest form of separation of duty
insists that a transition cannot occur unless all trustworthy individuals agree
that it may. Untrusted requestors acting for trusted individuals are essentially
those who are not being commanded from the trusted path and hence their
opinion is of no value.

The strict separation of duty transition axiom ensures that all individuals are
represented by at least one requestor which is not untrusted.

Strict Separation Of DutyF bTransit ions
t.v.Id(t.r?.requestors nl trustworthy) = ID

It can be seen that this axiom is very strong and in practice it will be
necessary to allow some relaxations. For example, if the only concern is the
integrity of security labels then separation of duty need only be applied to
those transitions which alter the classification of some material.

In practice transition requests will only be made by a -ingle requestor. It will
therefore be necessary to ensure that changes occur only after a suitable
collection of requests have been made. For example one transition may request
a change and another may action it. As long as two different individuals were
responsible for these requests, separation of duty will be upheld. In general a
sequence of requests made by single individuals will be needed to provide n-way
separation of duty.

This corresponds to the history recording mechanisms proposed by (Karger88J
and an earlier formulation of this model [Terry&Wiseman88). These, however,
relied on examining the entire history of the system and it is unlikely that this
could be done efficiently. The approach proposed here allows separation of
duty to be upheld on the basis of very small histories which can be incorporated
into the objects themselves.

The definition of confidentiality did not specify that all entities which are
accessed must have appropriate classifications, only that they have some
classification. Separation of duty is offered as the means of ensuring that
classifications are appropriate. Similarly separation of duty depends upon the
integrity of the Id and Trust labels. If the task of changing these controls is
delegated, they must themselves be subject to separation of duty.

Separation of duty does not say anything about who may carry out changes to an
entity, other than sufficient individuals must agree that it can happen.
Discretionary access control may be used to ensure that only appropriate
individuals can make certain changes.

2.3.3 Discretionary Access Control

Discretionary access control is the notion that an individual is associated with
each requestor and that a set of individuals are associated with each entity. An
entity may only be accessed if the requestors' identities are in its set of"permitted" identities. This is most commonly implemented as an access control
list (ACL). However, if the security of a large system is based entirely on
ACLs which can be modified at the discretion of the individual users, its
behaviour cannot be predicted. This is the reason for introducing the broad
controls of confidentiality and separation of duty. Note that altering an ACL is
itself typically controlled by some ACL.

Discretionary access control is therefore concerned with the Id and Acl subsets
of the state relation. The access control list modelled here is the simplest
possible, though more grandiose schemes are readily incorporated into the
model. This simple version allows any individual mentioned in the ACL equal
rights to alter or observe the entity. In particular altering the ACL is not
limited to the entity's owner and "observe access" cannot be granted without
granting "modify access". However, altering an ACL is like altering anything
else and is subject to separation of duty.

The axiom states that each requestor's identity must be included in the ACLs of
all entities which are observed or changed (excluding new entities). Note that
entities with no entries in their ACL can never be accessed and that all
requestors must be acting on behalf of an individual.

Di scret ionaryF bTrans it ions
t.r?.requestors RELATES (accessed\new) r t.v.Id ; t.v.Acl -I

2.4 Summary

The model presented here has dispensed with notions introduced by later
examples of Bell-LaPadula modelling, like *-property, Hierarchy,
Compatability and Tranquility, and has returned to the simple elegance of the
basic approach. Systems based on an "Orange Book" Bell-LaPadula model
employ Trusted Processes to allow transitions that do not meet the axioms yet
still uphold the system's policy. While these do in practice employ mechanisms
like separation of duty to preserve the integrity of labels, the model proposed
by this paper explicitly incorporates separation of duty and so makes the
design decisions and their effect more open.

The "Orange Book" Bell-LaPadula model describes security as a property of a
state in terms of the kinds of access that can potentially occur in the future.
This is reasonable if the system is being modelled at a low level, in that
checks can only be made efficiently when files are mapped into a process'
address space, as performing checks on every access is very costly. Defining
confidentiality in these terms is quite straightforward, the Simple Security
Property, however ensuring the integrity of labelling requires the use of the
much less obvious and very restrictive *-Property.

The model proposed by this paper describes security as a property of a
transition. This allows confidentiality and integrity of labelling to be defined
directly in terms of what actually happens, rather than what may happen in the
future, giving a more obvious and flexible definition. The reason this can be
implemented efficiently is that the system is being modelled at a high level. It
is intended that systems are modelled in terms of objects at the user level,
such as documents and mail messages, rather than operating system objects
like memory segments and processes. Accesses are therefore actions such as
"obtain a copy of the (unalterable) contents of this document", for which a
single check is affordable.

3. wSERCUS: An Example System

To illustrate the use of the modelling approach in practice, the specification
of a simple system, PSERCUS, will be developed. This is a cut down version of
SERCUS which is a document handling system that has been used to demonstrate
various aspects of SMITE [Harrold88]. This section presents a set of transition
rules which are employed in section 5 where a complete specification of the
example system is given. This specification combines the rules, which describe
the security aspects of the system, with a description of the system's
functionality.

This set of rules is just one of the many that are possible. They are tailored
towards the example system and have been deliberately made as simple as
possible. This should increase the likelihood that they can be shown to be
consistent and to uphold the axioms, which will be an important consideration for
systems of significant complexity. Therefore the rules each perform a simple
operation, such as create/destroy an entity and create/lose an attribute.

3. 1 The Requirements of wSERCUS

The primary concern of this system is maintaining confidentiality. The owners of
the system are absolutely trusted in that they, by definition, cannot violate
confidentiality. Certain software, such as the login program, is certified to
behave as their faithful proxy at all times. Such entities are ascribed the
highest form of TRUST which will be denoted by "trusted".

The system's owners delegate work to the users of the system, however they
do not trust the users to maintain the integrity of the labels, upon which
confidentiality is based, under all circumstances. They therefore ascribe to
them a weakened form of trust, denoted by "loyal".

It is assumed that loyal users are generally reasonably honest and that on the
whole they will not knowingly cause a breach of security. However they may do
so through mistakes and oversights. Therefore, when documents are to be
downgraded below a certain level, separation of duty is to be applied as a
safeguard. However it is not considered feasible that loyal users will
mistakenly send information through the signalling channels which, for example,
arise through creating or regrading entities.

For flexible operation, the system must allow loyal users to create documents
which are classified lower then their clearance. In effect this is a downgrade
without the involvement of another user. To prevent misuse of this feature it is
necessary to introduce a system of "dual labels" (Woodward87]. A high water
mark is maintained for draft documents which records the highest classification
of information that mrv have been included in them. A loyal user, acting alone,
may downgrade a draft document as long as the new classification dominates the
high water mark. To downgrade lower than this the consent of another loyal
user is required.

3. 2 Application Specific Extensions

The relaxed separation of duty axiom which is to be used by pSERCUS insists
that downgrade requests can only be made by more than one requestor. In
practice some individual first requests that a document be downgraded and some
time later another will approve the request and the document will be
downgraded. Thus two transitions, each made by just one requestor, are made.
To ensure that the axiom is upheld it is necessary to record the requested
classification and the identity of the requestor and ensure that it is a
different individual who actually carries out the downgrade.

Thus the state must be extended to include high water marks and downgrade
requests. At the same time the part of the state which is not refined into
Class, Id, etc. is formed into the relation Other which allows the specification
to assert that "everything else stays the same". However, note that the
specification still does not insist that these structures partition the state.

VA

Vs

Hwm ; E CLASS
ReqClass : E CLASS
Reqld : E ID
Other : E A

Class U Id U Acl U Trust U Hwm U ReqClass U Reqld U Other = F

The schemas RA, WA etc. are defined in exactly the same way as before, except
that VA is used instead of Vs . Similarly for operators like 4 and r.

The trusted and loyal attributes must be introduced and for convenience an
ordering, , is given. The functions LEAST and MOST give the least and most
trusted member of a set, though these are not fully specified.

trusted, loyal TRUST
: TRUST . TRUST

LEAST _ P TRUST -. TRUST
MOST _ P TRUST TRUST

trusted a loyal a untrusted

The Hwm function records information about the history of modifications made to
an entity. It is therefore necessary to give an axiom which ensures that this
history is correctly updated. Essentially, when an entity is altered its high
water mark is raised so that it dominates the classification of all the observed
entities and that of the requestors. Another example of a history mechanism
would be the recording of journalling information.

Hi ghWaterMarks

bTransit ionA

t .v'.-Hwm - 1 ; t -v.- Hwm r.(__

GLB t.v'.Hwm(changed I level
where

level a LUB (t.v.Class e t.v.Hwm)(source

The first predicate states that high water marks can never be lowered, though
they may be removed, and the second that the resulting high water mark, if
any, on all changed entities must dominate the highest classification of
information that could have been placed in it. When entities have no high water
mark their classification is used to calculate this.

Separation of duty has been proposed as the means of ensuring the integrity of
Class, Id, Trust and Acl. The axiom given so far is too strong because it
requires that all users must request a change before it can happen. In pSERCUS
separation of duty can be relaxed, because, for example, it is considered
sufficient to have only two individuals agree that a classification can change,
and under some circumstances only one is required. Thus an application specific
separation of duty axiom is required. This will be given in several parts, each
governing changes to different parts of the state.

13 wSERCUS

§1. If a new entity is given an Id or an existing entity changes its Id, the
requestors must all be trusted. Note that only one requestor is required,
because Trusted individuals may perform any action.

Separat ionOfOuty d

t : TransitionA

t.v'.Id \t-v. Id ;g{

-. t.r?.requestors c dom t.v.Trust
A LEAST t.v.Trust(t.r?.requestors) = trusted

§2. All entities whose degree of trust is changed and those who are created
and given a degree of trust, cannot become more trusted than the least
trusted requestor. Again, it is not necessary to have more than one requestor
for such changes.

Separat ionOfutyTrust

t : TransitionA

t.r7.requestors c dom t.v.Trust
LEAST t.v.Trust(t.r?.requestors) a MOST t.v'.Trust(altered)

where
altered a dom(t.v'.Trust \ t.v.Trust)

§3. Single requestors that are at least loyal may directly alter the
classification of an entity with a high water mark, though the new classification
must dominate the entity's high water mark. Two or more requestors, who are
all at least loyal, have complete freedom to directly alter the classification
of any entity. Classifications may only be altered indirectly, that is copying or
moving attributes to lower classified entities, if all the requestors are
trusted.

Separat i onOfDutyclass

bTransit ionA

t.r?.requestors Q dom t.v.Trust

LEAST t.v.Trust(t.r?.requestors) = untrusted
-$1 1 <4 t.v' = 1 <4 t-v

dam t.v'.F = dom t.v.F
t.v'.Class = t.v.Class

LEAST t.v.Trust(t.r'.requestors I = loyal

A # t.r?.requestors 2 2

1 < t.v' = 1 < t.v

LEAST t.v.Trust(t.r?.requestors) = loyal
A # t.r?.requestors = 1

1 4 t.v' = 4 t-v
t.v'.Cless "| (t.v. Closs e t.v. Hwm) r. (_.Z-)

GLB t.v'.Class(new) a highest
where

highest a LUB (t.v.Class * t.v.Hwm)(source)
1 a t.v.Class LOWER LUB t.v.Class(t.r?.requestors I

The axiom states that all of the requestors must be attributed with some
degree of Trust. If any one of them is untrusted then no entity classified lower
than the highest requestor may be modified, no entities may be created or
destroyed and no classifications may be changed.

If none of the requestors are untrusted, but at least one is loyal, then
classifications may be altered, though no entities classified lower than the
highest requestor may be modified. If there is only one requestor, an entity's
new classification must not be lower than its high water mark and the
classification of new entities must dominate the highest high water mark of the
observed data.

The axiom places no constraints on a request if all the requestors are trusted.
Therefore trusted requestors may make arbitrary changes to classifications,
by direct or indirect means.

Note that this version of separation of duty allows untrusted requestors to
"write up" and a single loyal requestor to raise the classification of an entity.

§W. If a new entity is given an ACL or an existing ACL is changed, none of the
requestors can be untrusted. Note that just one loyal requestor is sufficient
to alter an ACL, but such changes are themselves subject to an ACL.

Separat i onOfDutyAcl

t : TransitionA

t.v'.Acl \ t.v.Acl % {}
= t.r?.requestors a dom t.v.Trust

A LEAST t.v.Trust(t.r?.requestors) > loyal

The complete separation of duty axiom is given by the conjunction of the
constraints on changing Id, Trust, Class and Acl. No axiom is given governing
changes to Hwm because this records part of the history and will be fully
specified. Changes to Other parts of the state are unconstrained. Changes to
ReqClass and Reqld are not constrained because these have been introduced to
implement the separation of duty constraints for changing classifications.

SeparationOfDuty a SeparationOfDutyld A SeparetionOfDutyClass

A SeparationOfOutyTrust A SeparationOfDutyAcl

3.3 The Example Rules

The following set of rules will be used in section 5 to describe the security
aspects of the PSERCUS document handling system. The proof that a system
based on these rules is secure has not been completed, but it is hoped that
this will be relatively straightforward.

In this example three rules are given for creating entities, two for gaining
attributes and three for downgrading entities. These will be combined with the
specification of functionality in section five to give an overall specification of
the system.

The following schema defines various sets of entities regarding a rule. This will
be used in following schemas to make the specification more concise. Those
entities observed by the request are given by the set observed. The set new
gives those entities created by the request. Those entities which have gained
or lost attributes, including entities which are created or destroyed, are given
by the set changed. The set source gives those entities which are the source
of influence over the request., that is those observed and the requestors.

The schema also insists that there is just one requesting entity and that the
request is valid. The requestor's classification must dominate the
classification of all observed entities and the requestor must be mentioned in
the access control lists of all accessed entities.

15 VSERCUS

_VA

r? : RA
VV' : VA
observed, new, changed, source : P E
requestor E

observed =dom r?.request.F
new = dom(v'.F) \ dom(v.F
changed = dom(v' \ v) U dom(v \ v'
source : observed U r?.requestors

r?.requestors = { requestor }
requestor e dom v.F
r?.request r. v.F

v.Class(requestor) a LUB v.Class(observed)
observed U changed c v.Acl'1({ v.Id(requestor) })

The next schema will be used when high water marks are altered. This specifies
that any entity which is changed, but not destroyed, has its high water mark
raised to the level of the source of influence. Note that new entities are given
the appropriate high water mark.

_HWMA

FVA

v'.Hwm = dam v'.F 4 (v.Hwm LUB (changed RELATES {level})
where

level e LUB (v.Class * v.Hwm)(source)

The next schema will be used when high water marks do not change, unless the
entity is destroyed, and new entities are not given a high water mark.

_-HWMO

v'.Hwm = (dom v'.F) v. Hwm

Create Entities

Creation of entities can be detected by other active entities. However the
separation of duty requirements state that the system is secure if the creation
is performed by individuals, or rather their faithful proxies, who are loyal or
trusted. Three forms of CreateEntities are given because of the differing
constraints imposed by separation of duty on classifying new entities and
slightly different requirements.

The first rule states that the requestor must be trusted and no existing
entities are changed. The new entities may only be given attributes taken from
the entities mentioned in the request, because this rule is concerned with
creating entities only and excludes creating attributes. The new entities are
not given a high water mark, but must be given some identity, classification,
access control list entries and a degree of trust. However, these are not fully
specified because a trusted requestor is free to chose any values for them.

Cr eat eEn t i t i eSTRUTE

HHWMA

v.Trust(requestor)=trusted

dom(v.F) v' =v
rnS(dom(v.F) 4v'.F) c v.F(observed)

new c dom v'.Id
new c dom v'.Class
new a dom v'.Acl
new c darn v'.Trust

The create entities rule f or loyal requestors is basically the same as for
trusted requestors, except that the new entities are ascribed neither a degree
of trust nor an identity. They are however given the classification of the
requestor and the requestor is included in their access control lists. They are
also given a suitable high water mark.

Cr eat eEn t i t i eSOA

6HWMA

v.Trust(requestor)=loyal
rng(dom(v.F) 4 v'.F) r. v.F(observed)

v'.Trust = v.Trust
v'.Id = v.Id
v'.Class = v.Class U new RELATES (v.Class(requestor) I
v'.Acl = v.Acl U new RELATES (v.Id(requestor) I
v'.ReqClass = v.ReqClass
v.Reqld = v.Reqld
{new} 4 v'.Other = v.Other

The final create entities rule is similar to CreateEntitiesLOYAL except that the
new entities may gain attributes which did not exist anywhere in the state
beforehand and they are not given a high water mark. This is called
CreateEntitiesc~p because# as explained in the next section, it is used when new
capabilities are created for the new entities.

Cr eat eEn t i t i esCAP

EHWAJI

v.Trust(requestor)=loyal
rng(dom(v.F) 4 v'.F) n (rns v.F \ v.F(observed)) = (I

v'.Trust = v.Trust
v'.Id = v.Id
V'.Class = v.Class U new RELATES {v.Class(requestor) I
v'.Acl = V.Acl U new RELATES {v.Id(requestor)}
v'.ReqClass = v.ReqClass
v'.Reqld = v.Reqld
{new} 4 v'.Other = v.Other

Gain Attributas

There are two versions of this rule, one for loyal requestors and one for
untrusted requestors. The difference is that loyal entities have no high water
mark.

__ _ RC

For a loyal requestor the structure of the initial state is preserved, in that
the only change possible is f or the requestor to gain attributes from the
observed entities.

GainAttr ibuteSLoyaL

AVO

Z-HWMa

v.Trust(requestor)=loyal
requestor o! dam v.Hwm
changed = {requestor}
rng(v'.F \ v.F) r. v.F(observed)
v r.V'
v'.Acl =v.Acl

v'.Id =v.Id

v'.Trust = v.Trust
V'.Class =v.Class
v'.Reqld = v.Reqld
v'.ReqClass = v.ReqClass

The same is true for an untrusted requestor, except that its high water mark is
updated.

Gu i nAttr i but eSU4RUSTED

aVA
AHWMA

v.Trust(requestor)=untrusted
requestor e dom v.Hwm
changed -{requestor}
rng(v'.F \ v.F) r. v.F(observed
v'.Acl =v-Acl

v'.Id v.Id
v'.Trust = v.Trust
V'.Cless = v.Clmss
v'.Reqld = v.Reqld
v'.ReqClass = v.ReqClass

Downgrade

Downgrading usually requires a request made by two requestors, but this is
supported by two rules each made by one loyal requestor.

This rule allows a loyal requestar to r-equest that an entity be downgraded. The
only changes to the state are that the requested classification and identity of
the requestor are added to some entities. These entities cannot already have a
downgrade request outstanding.

.~rnrIQ

-Request Down gr ade

8VA
xHWMA

v.Trust(requestor) = loyal

doam v'.F = doam v.F
v r. V'

v'.Class = v.Class
v'.Acl = v.Acl
v'.Id = v.Id
v'.Trust = v.Trust
v'.Other = v.Other

changed = dom v'.ReqClass \ dom v.ReqClass
v.Class I ; (v'.ReqClass \ v.ReqClass) Q (_)
v'.Reqld v.ReqId U changed RELATES { v.Id(requestor) }

A downgrade may occur only if it has already been requested. Separation of
duty is enforced because the requestor performing the downgrade cannot also
have requested it. Once the entities have been downgraded, the request to
downgrade them is removed. Other elements of the state remain unchanged.

Per formDowngrade

LVA
-=HWMA

v.Trust(requestor) = loyal

doam v'.F = dom v.F
V' a V

v'.Id = v.Id
v'.Trust = v.Trust
v'.Acl = v.Acl
v'.Other = v.Other

changed = dom v.ReqClass \ dom v'.ReqClass
changed Q dom v.Reqld
v'.Reqid = changed 4 v.ReqId

v.Id(requestor) 9 v.Reqld(changed)

(changed 4 v'.Class)-I ; (changed a v.ReqClass) = id CLASS

A third form of downgrade allows entities with high water marks to be
downgraded by a single loyal requestor, as long as the new classification
dominates the high water mark.

.19 .SERCUS

Downgr adeHwm ______________________

Z-HWMa

v.Trust(requestor)=loyal

dom v'.F =dam v.F
changed 4v'.Class =changed 4 v.Class
v'.Hwm =v.Hwm

v'.Id =v-Id

v'.Trust = v.Trust
v'.Acl = v.Acl
v'.ReqClass = v.ReqClass
v'.Reqld = v.Reqld
v'.Other = v.Other

(changed I v.Class)' ; (changed -0 v'.Class) r (_
(changed 4 v'.Class)' ; (changed 4 v.Hwm) r C_

ISERCUS 20

4. Implementation & Assurance

The security policy model is described in terms of entities and attributes, the
relationship between them and a set of state transition rules. An entity is an
abstraction of a discrete object that can be altered, while an attribute is one
that is unchanging. The state relation between entities and attributes, F# is an
abstraction of entities "containing" or "addressing" attributes. The transition
rules are an abstraction of programs or procedures which observe and alter
this relationship. A request is an abstraction of the parameter passing and
address translation mechanisms used to invoke these programs.

4. 1 Implementation on a Conventional Architecture

The model assumes that all entities are universally visible, that is an entity
can know of the existence of all others, but they can only be observed and
altered by invoking a transition rule. Thus the concrete realisation of an entity
must be able to hide and protect its contents from other entities, but not from
transition rules. This can be implemented using a simple two state machine.

The state transition rules would be implemented as supervisor calls and the
mapping between entities and attributes would be implemented as data
structures accessible only in supervisor state. An active entity would be
implemented by a process running in user state. It would be able to "name"
entities and attributes using memory addresses or indices, but is prevented
from observing or modifying them by the memory management system.

For example, a secure filing system could be implemented by storing passive
entities on disc. Such "files" may only be observed and altered by transition
rules implemented as device drivers running in supervisor state. Attributes
such as file names may be stored directly in the memory of the active entity.
Transition rules which allow files to be read, written, created and deleted
would be implemented as device driver functions which take a file name as a
parameter. However transition rules that manipulate file names would simply be
implemented by the instructions of the machine.

To model the notion of "opening" a file to gain a "file control block", which
keeps context information that controls sequential file accesses, a class of
entities could be introduced to represent open files. These would contain
attributes, protected by supervisor state, which keep the file's address on
disc and describe the current position in it. Note that although open files are
entities, and hence are accessible to all entities in the system, the protection
facilities of the system will probably only allow their "owner" to use them.

While it is obviously possible to build a secure system, modelled using this
approach, on a two state machine this is not the most sympathetic
architecture. Many advantages are to be gained by using a ring based protection
system, in particular this allows some structure to be imposed on the large
amount of supervisor state code. However, the use of certain capability
protection schemes allows a much finer structuring to be imposed on both the
system and user software, to the point of removing the distinction between the
two .

4.2 Implementation using Capability Addressing

The most fundamental property of capability addressing is that capabilities are
the only means of addressing an object and they cannot be forged. That is
scalar data cannot be treated as capabilities and a capability cannot be
altered so it refers to a different object. Capabilities provide a uniform,
system wide method of addressing , even extending to distributed systems
[Foster&CurrieB6J and backing store [Wiseman88, which greatly eases the task
of software construction and reuse [Stanley85. In addition, the use of
capabilities make it possible to rely on low level automatic "garbage collection"
(Wiseman8SJ to recover unused objects, which relieves all software of the
burden of memory management.

twith the notable exception of the Cambridge CAP Computer which has a unique
hierarchy of address spaces.

21 Implementation & Assurance

Capabilities can also be used as the means of addressing objects by the users
of the system, as has been demonstrated with the Flex system
[Fosteret.al.82]. The traditional approach of usin9 names for files is often
inappropriate, as seen by the rise in popularity of icon based systems, and as
an implementation technique it is prone to attack by viruses [isemanB8j.

In using such a system to implement the security policy model, entities would be
represented by objects addressed by capabilities. Attributes would either be
scalar data, such as integers, or further objects addressed by capabilities.
However entities and attributes require some protection, and simple capability
based addressing offers none.

There are two requirements of this protection. First it must be possible to
distinguish between capabilities for entities and attributes and those for
arbitrary data structures which are not bein9 modelled. Second it must be
possible to restrict access to entities and attributes to software that
implements transition rules. Both requirements can be satisfied by utilisins
sealed objects [Redell?"]

In the simplest form of this mechanism two kinds of capability are
distinguished, sealed and unsealed, and a seal is attached to each object.
Using an unsealed capability for an object gives full access to it, but a sealed
capability gives no access. An unsealed capability may be converted into a
sealed version at any time, but a sealed capability may only be converted into
an unsealed version if the object's seal can be presented. Note that the seal
is unforseable if it is a capability which is kept secret.

Entities and attributes will therefore be implemented as sealed capabilities for
objects whose seal is known only to the transition rule's code. It is possible to
distinguish between them and arbitrary capabilities by attemptin9 an unseal
operation. This will fail to unseal arbitrary capabilities because the seal is
bound to be wrong.

A prerequisite for protecting data with sealed capabilities is that the seals
themselves must be protected from theft and misuse. The requirement is in
fact that the seals used for entities and attributes are only available to the
transition rules when they are invoked. In particular, software which invokes
the rules must not be able to extract the seals from the rule. Protection of
this form is offered by closures [LandinG4]. These are bindings of code with
data that is only available when the code is executed and are in effect first
class procedures [Currie82].

The machine must distinguish closures from other objects, so that it can ensure
that they may only be called and not read or written. This could be implemented
using a seal which is known only to the hardware, though it is more convenient to
distinguish between the different kinds of object directly by giving each object
a type.

It will be convenient if active entities can be implemented directly as
processes, however they must be prevented from making arbitrary alterations
to their attribute relationships. These relationships must, however, be
accessible to the transition rules, for example to allow the clearance to be
inspected. The transition rules cannot rely on the process to pass on such
information, and in practice this would be far too inconvenient anyway. The
requirement is for context information to be attached to processes, which is
only accessible to transition rules. This control is provided by associating a
seal with an item of the context information, so that it can only be retrieved or
altered if the seal is known.

It would be possible to use just one seal for all entities and attributes, though
there is no reason why different seals should not be used for the different
types of entities and attributes found in an application. Such a practice would
allow the development of the transition rules concerned with each type to
proceed independently and would limit damage if mistakes did occur in the
implementation.

The model's requirement for protection therefore leads to a machine with
capability addressing that distinguishes between four types of object; data,
sealable, closure and process. Possession of a capability for a data object
allows it to be read and written. A capability for a sealable object either gives
no access or full access depending on whether the capability is sealed or
unsealed. Capabilities for closures only allow the object to be called.
Capabilities for process objects allow other processes to have some control
over their offspring but are not used for communication.

The SMITE capability computer provides these protection mechanisms within a
high level language oriented instruction set [Wiseman88], though it is equally
possible to incorporate them into a reduced instruction set architecture
[Wiseman89]. To see how it is possible to provide these mechanisms using
computer architectures with conventional addressing their relationship with
strongly typed programming languages must be considered.

4.3 Implementation using Compile Time Protection

Programming languages provide protection through their scope rules, that is
variables which are not in scope cannot be accessed. This is directly equivalent
to the use of capability addressing, where objects cannot be accessed unless a
suitable capability is possessed. The type rules of a language prevent
inappropriate operations being applied to data, for example procedures may
only be called. The typing provided by the capability computer hardware is
much more limited, there being only four types of object and two kinds of data,
but it too prevents inappropriate usage.

Thus if a programming language has a strong type system which pervades the
entire system and provides the necessary protection features, it will be
possible to implement the security model using it. If the language car, be
compiled to run efficiently on conventional computer architectures then a highly
portable secure system is the result.

The compilai- solution to protection has been used quite sucessfully before, eq.
the Burroughs 86e, but it has suffered from assurance problems, which are
discussed further in the next section. Also it is necessary to ensure that all
software is ruled by the strong type system, which means the type system
must be sufficiently powerful to allow all operating system and application
software to be implemented.

A system with these properties is called TenlS [Foster89]. This is an
algebraically defined abstraction of a computer which acts very much like an
intermediate language. However it has a powerful type system, including
polymorphism, abstract types, universal union of all types and types which
describe persistent and remote objects, that is those on disc and in other
machines. Compilers output TenlS 'code' which is then translated, by applying
a homomorphism, into the target machine code for execution. The resulting
program is not interpreted and most checks, such as array bounds checking,
can be made at compile time. Compilers for Alqol6B, Pascal and C exist and Ada
is under development. Translators for VAX and Flex, on which SMITE is based,
are currently available and others are under development.

The environment in which TenlS executes may be implemented on a bare machine
or may exist on top of an existing operating system, allowing peripheral driving
software to be reused. In the latter case the correctness of the overall
system obviously depends upon the correctness of the underlying operating
system. For example the type system may be circumvented if an error in the
disc driver causes the wrong data file to be read, which is fatal because even
a small flaw in the type system will allow the security mechanisms to be
bypassed.

The security of the type system therefore depends upon the correctness of
the underlying operating system, not its ability to uphold partial properties
like confidentiality. Therefore the use of a security enhanced version is of no
benefit. However most operating systems are reasonably correct and can be
relied upon to access the right file. Therefore if only moderately low
assurance of overall security is required, an off the shelf processor and
operating system can be used as the basis for the TenlS abstract machine.

23 Implementation & Assurance

The implementation of a TentS system on bare hardware requires some operating
system software to be written. However this would be relatively small and
tailored to the task. It should therefore be possible to produce a system with
much hi9her assurance that the type system is correct, though at extra
expense.

The problem with this approach is that signallin9 channels and denial of service
threats arise through the heap management system on which the abstract
machine is based. These problems can be fixed [Wiseman88], but the solution
requires hardware support to run efficiently. Using a capability architecture as
the vehicle for TentS allows hardware based garbage collection to be
implemented and also provides an orthogonal layer of checks which guaro
against errors in the TenIS translator. There are also tradeoffs between
translator and hardware complexity. The use of a high level language
architecture like SMITE means that relatively simple translators are required
at the expense of complex microcode, whereas a RISC architecture would
require much more complex translators but no microcode.

4.4 Formal Verification

Having modelled security as axioms regarding confidentiality, discretionary
access control and integrity, it is necessary to prove properties such as data
confinement and that the transition rules chosen as the basis of implementation
uphold these axioms. Note, there is no inductive proof akin to that of the
"Orange Book" Bell-LaPadula model, because the axioms all concern state
transitions and no definition of a secure state is given.

Data confinement properties, for example that the contents of a secret
message will never be seen except by those individuals cleared to secret, may
hopefully be established using a proof of non interference. For practical
systems this proof will fail, but in doing so it will reveal the channels
responsible for the failure. These will include legitimate channels, such as
properly authorised downgrading, and acceptable covert channels, such as
loyal users signalling by creating entities.

The proof that the rules uphold the axioms is relatively straightforward,
though it will involve showing that the separation of duty requirements are met
by the appropriate sequence of single requestor transitions.

In addition to these proofs it is necessary to establish that the initial state is
appropriate. Note that this is not the notion of a secure initial state, since in
this model it is transitions that are secure, not states. What is of concern is
the integrity of a state. That is the integrity of the security labels, identity
attributes, trustworthiness ascribed to entities, etc. must be shown for the
initial state. This of course is not something that can be proven.

For the highest assurance, it is necessary to prove the correspondence
between a design and its implementation, which occurs at several levels. The
underlying assumptions made by the model about execution must be shown to be
valid, the implementation of the rules must be correct and the correctness of
the system's external interfaces must be established.

Firstly, it must be shown that entities and attributes are discrete, in that
altering one entity does not have a side effect on another. For example, this
would be the case if two entities were implemented using some common storage
which was updated. It must also be shown that the relation between entities and
attributes can only be observed and altered by the transition rules. In terms
of a capability based implementation this involves showing that the microcode
provides unforgeable capabilities, closures that can only be called and a safe
sealing mechanism. Then it must be shown that the rules do not compromise the
seals.

It appears that much can be achieved in this area using program analysis, as
both the microcode and the Ten1S abstract machine are defined algebraically.
Since capabilities cannot be forged they can only be passed around by copying
them. it is not possible to transmit capabilities through signalling channels.
Thus information flow analysis of capabilities will not be as pessimistic as for
scalar data, and hence it is expected that meaningful results can be obtained.

. imp? sLAssurance 24

Secondly the rules must be correctly implemented, in that they must perform
the appropriate checks. This is the main reference monitor function of rejecting
illegal requests. The technique of program refinement is of use here.

Thirdly the external interfaces must be correct so that the world modelled
inside the computer faithfully represents the real world outside. This covers
correct authentication of users and the correct implementation of the trusted
path as well as appropriate labellin9 of output. Again, the technique
applicable is program refinement.

At present, none of the proofs, refinements or analyses have been carried
out. The next stage of the SMITE research programme is to carry these out for
the SERCUS demonstration.

S. Specification of pSERCUS

Section 3 refined the state components of F to distinguish certain security
related attributes and defined some rules which ensure that the security of
other data is always maintained. F is now refined further to introduce the
attributes and entities required to carry out the particular application, in this
case ySERCUS.

5. 1 Application Specifics

In pSERCUS users may create, open and downgrade classified documents. The
contents of a document can never be altered once it is created. This mimics a
real world system in which writing in the margins and correcting fluids are
banned. Documents are created from other objects, called variables, whose
contents can alter.

High water marks will only be used for variables, allowing users to enter
information below their clearance. A variable would be downgraded to the
correct classification before producing a document from it. Documents can only
be downgraded with the consent of two individuals.

The users of the system interact with it through display terminals. The display
presents an environment in which documents and variables may be stored and
manipulated. In effect displays are proxies of the users.

Documents, variables and displays must be represented by entities, since their
classification or contents can be altered.

Document, Variable, Display : P E

Before users can use the system an agent of the system's owners must check
that they are authorised. This is essentially a "login process" which checks
the user's name and password and creates a suitable Display. This entity,
called welcome because the system is user friendly, is a proxy of the
system's owners and hence is trusted.

welcome : E

The documents and variables of pSERCUS are named by simple capabilities.
These are attributes because they never change. Other unalterable objects,
such as characters which make up the text of documents and procedures taken
from a non-overwriting backing store, are also attributes which are effectively
just constants.

DocCap, VarCap, Constant : P A

The state, F, can now be refined to define how these application oriented
entities and attributes are related.

V

VA

Var : Variable . VarCap
Doc : Document -- DocCap
Contents : E ol A

Doc U Var U Contents 9 F

dom Var U dom Doc U dom(Display 4 F) = dom Contents
Contents(Document) c Constant U DocCap

The relation Var gives the set of capabilities that can be used to access a
Variable. Variables represent complex objects made up of arbitrary graphs of
capabilities for primitive objects. Since such a graph may have more than one
way in it is possible to have more than one capability refering to the same
Variable, and hence a set is required. If untrusted software is given access to
two Variables it may arrange for their two graphs to be joined. Therefore,
assuming the worst, it is necessary to consider the two Variables as one in
future.

Doc is a function that uniquely defines the capability for each document that
currently exists. The relation Contents gives the contents of all the
variables, displays and documents. Documents may only contain constants and
capabilities for documents. Variables and Displays may contain anything.

As before it is assumed that all operators and schemas have been refined to

use this new definition of the state.

5.2 The Specification

In the initial state only welcome exists. It is trusted and has a suitable AEL.
It also has an Id and Class though these are undefined.

In it ialState

V

dom F = {welcome}
dom Class = {welcome}
dom Id = {welcome}
Trust(welcome) = trusted
Acl(welcome {welcome}
Hwm = {}
ReqId = {}
ReqClass = {}
Other = {}

5.2.1 Login

The first operation to be specified logs a user onto the system. This is
instigated by the welcome entity once it has validated the losin request. The
operation creates a new display entity which will act for the user.

27 Specification of pSERCUS

Los i no

r? :R
V, V V

i d? :ID
class? :CLASS

display!' display

r?.requestors = {(welcome}
r?.request.F ={- welcome } 4 v.F

display! 9 dom v.F
dom v'.F = dom v.F U {(display! I
id? 9 rng Id

v'.Id(display! i d?
v'.Class(display!)=class?
v'.Acl((display!}) = { id? I
v'.Trust(display!)=loyal
display! 0 dom(v'.ReqClass U v'.Reqld U v'.Hwm U v'.Other
{(display!} 4 v' = v

So Login can be fully specified as

Log in A CreateEnt it i eSfTRUSTE A Losgin 0

5.2. 1 Open Existing Document

The operation to open a document returns the contents of the document to the
requestor' s display.

Open-i.documento

r?:R
V, V, V

doc? Document
display? :Display

display? e dom v.F
r?.requestors = {display?}
r?.request.F = C doc? -. Doc(doc?) I
Doc(doc?) e v.Contents({Cdisplay?}

v'.Contents = v.Contents
U {display?} RELATES v.Contents({doc?}

V'-Class = V.Class
v'.Id =v.Id
v'.Trust = v.Trust
v'.Acl = v.Acl
v'.ReqClass = v.ReqClass
v'.Reqld = v-Reqld
v'.Doc = v.Doc
v'.Var = v.Var

OpenDocument a GainAttributSLOYAL A Dpen...documento
v Go inAttr i butesuNTRusTED A Open-documento

5.Z .3 Create New Document

Documents are created from variables by copying their contents, though they
must not include any capabilities for variables.

Create_document0

r?:R
v, v' :V

display? :Display
var? :Variable
class? :CLASS

doc! :Document
cap! :DocCap

display?~ e dom v.F
r?.requestors = {Cdisplay?}
r?.request.F = {var? -. v.Var(var? I

v.Var(var?)e v.Contents({display?}
v.Contents({Cvar?}) . VarCap {

doc! 0 dom v.F
dam v'.F = dom v.F U {(doc!}
cap! 0 rng v.F

v'.Class = v-Class U -{ doc! -class? I
doc! e dom v'.Hwm
v'.Id = v.Id
v'.Trust = v.Trust
v'.Acl = v.Acl U {(doc! e~v.Id(display? I
v'.ReqClass =v.ReqClass
v'.Reqld = v.Reqld
v'.Doc = v.Doc U -{ doc! cap! I
v'.Var = v.Var
v'.Contents = v.Contents U {(doc!} RELATES v-Contents({(var?}

CreateDocument a CreateEntitiescAP A Create-.document 0

5.-2.4 Downgrading

There are three operations concerning downgrading. The first requests that a
document be downgraded, the second carries out the downgrade and the third
downgrades draft documents, ie. variables.

Request Downgr ade0

r? :R
v, V' : V

display? Display
doc? :Document
class? :CLASS

display? e dom v.F
r?.requestors = {display?}
v.Doc(doc?)e v.Contents({Cdisplay?}
r?.request.F (display? v.Doc(doc?),display? class?~ I

doc? 9 dom v.Reqld
doc? 9 dom v.ReqClass
v'.Reqjd = v.Reqld U (doc? a.v.Id(display? I
v'.ReqClass = v.ReqClass U {doc? "class? I

v'.Class = v.Class
v'.Id = v.Id
v'.Trust = v.Trust
v'.Acl = v-Acl
v'.Doc =v.Doc
v'.Var = v.Var
v'.Contents = v.Contents

Request Do wng~rads a Request Down gr adeLOYAL A Requ estDo wngrade0

PerformDowngrade0
r?:R

V, V' :V

display? :Display
doc? :Document

display? a dom v.F
r?.requestors = {display?}
v.Doc(doc?)e v.Contents({display?}
r?.request.F (doc? -- v.Doc(doc?) I

doc? e dom v.Reqld
doc? a dom v.ReqClass
v'.Reqld = {doc?} 4 v.Reqld
v'.ReqClass = {doc?} 4 v.ReqClass
v.-Class = v.Class * (doc? -v.ReqClass(doc? I

v'.Id = v.Id
v'.Trust = v.Trust
v.-Ac:1 = v.Acl
v'.Doc a v.Doc
v'.Var av.Var
v'.Contents - v.Contents

Per for mDo wn gr md a Per f ormnDown gr adeLOYAL A PerformDown grade0)

RegradeVar iableo

r? : R
v, v' . V

display? : Display
var? : Variable
class? : CLASS

display? e dom v.F
r?.requestors = {display?}
v.Var(var?) e v.Contents({display?})
r?.request.F = { var? P v.Var(var?) }
class? a v.Hwm(var?
v'.Class = v.Class * { var? ' class? }

v'.Id = v.Id
v',Trust = v.Trust
v'.Acl = v.Acl
v'.ReqClass = v.ReqClass
v'.Reqld = v.Reqld
v'.Doc = v.Doc
v'.Var = v.Var
v'.Contents = v.Contents

RegradeVar iable a DowngradeHwm A RegradeVar iable o

5.2.5 Other Operations

Other operations have been ommitted but are similar to those which have been
given. An operation that allows untrusted displays to be created and destroyed
is required. This effectively models running untrusted software in another
window, controlled from the trusted path. Obviously logout is also required, as
are operations for creating, editing and destroying variables.

The complete SERCUS demonstration includes files of documents, full
journalling facilities, mail messages and private storage facilities (the
equivalent of cupboards in the real world). The existing SERCUS specification is
written as a conglomeration of security and functionality requirements
[HarroldBB] and this is currently being recast in terms of this model.

5.2.6 Summary

This section has specificed the functionality of the pSERCUS application
independently of the security aspects. The total specification was given by
using the Schema Calculus of 2 to combine this with a specification of security
given as transition rules.

6. Conclus.ons

In this paper a new security model has been presented which suggests that
confidentiality is solely about the observation of classified material and that
the integrity of the labelling upon which it is based is a separate concern.
Inspired by [ClarkiWilson87], separation of duty is proposed as the mechanism
for ensuring that the integrity of labels are preserved. Similar proposals are
made for the access control lists upon which discretionary access control is
based.

Strict separation of duty is expressed as the requirement that a change can
only happen if all individuals want it to occur, though this is obviously too
strong in practice. Also requests for change are made by software proxies
acting on behalf of individuals and varying degrees of trust are placed in them.
This reflects the degree of trust the system's owners have in the individual
and whether the proxy is being commanded via the trusted path. A practical
separation of duty requirement will therefore state the number of individuals
and their trustworthiness needed to allow a change.

The model is based upon a state machine with security defined by axioms on
transitions which define confidentiality, separation of duty and discretionary
access control. No axioms are given for states, though the system must start
in a state which is appropriate, that is one in which labels etc. have integrity.

To demonstrate the modelling approach the specification of a simple document
handling system has been given. In this system the downgrading of documents is
subject to separation of duty in that one individual must request a downgrade
and a different individual must authorise it before the change occurs.

It is shown that the model can be implemented using a two state or ring based
protection architecture, but a system utilising strong typing with underlying
capability addressing is proposed as the ideal solution.

References

D.E.Bell
Secure Computer Systems: A Refinement of the Mathematical Model
Mitre Corp. MTR-ZS47, Vol 3
April 1974

D.E.Bell & L.J.LaPadula
Secure Computer Systems: Mathematical Foundations
Mitre Corp. MTR-2547, Vol 1
November 1973

D.E.Bell & L.J.LaPadula
Secure Computer Systems: A Mathematical Model
Mitre Corp. MTR-2S47, Vol 2
November 1973

D.E.Bell & L.J.LaPadula
Secure Computer Systems: Unified Exposition and Multics Interpretation
Mitre Corp. MTR-2997
March 1976

D.D.Clark & D.R.Wilson
A Comparison of Commercial and Military Computer Security Policies
Procs. 1987 IEEE Symp on Security and Privacy
Oakland CA., April 1987, pplB4..194

I. F. Currie
In Praise of Procedures
RSRE Memorandum 3499
July 1982

J.M.Foster
The Algebraic Specification of a Target machine: TenIS
from "High Integrity Software", C. T.Sennett (Ed.)• Pitman Press
to appear 1989

J.M.Foster & I.F.Currie
Remote Capabilities in Computer Networks
RSRE Memorandum 3947
March 1986

J.M.Foster, I.F.Currie & P.W.Edwards
Flex: A Working Computer with an Architecture Based on Procedure Values
RSRE Memorandum 3500
July 1982

C. L. Harrold
Formal Specificaton of a Secure Document Control System for SMITE
RSRE Report 88002
February 1988

P. Karger
Implementing Commercial Data Integrity with Secure Capabilities
Procs. 198 IEEE Symp on Security and Privacy
Oakland CA., April 1988, pp130.. 139

P. J. Landin
The Mechanical Evaluation of Expressions
Computer Journal, Vol 6, Num 4
January 1964

C.Morgan, K.Robinson & P.Gardiner
On the Refinement Calculus
Oxford Univ. Programming Research Group Draft Report
April 1988

D.D.Redell
Naming and Protection in Extendible Operating Systems
MIT Technical Report MAC-TR-140
November 1974

J.M.Spivey
The 2 Notation: A Reference Manual
Programming Research Group, Oxford Univ. , Draft JMS-87-12a
1987

M. Stanley
The Use of Values without Names in a Programming Support Environment
RSRE Memorandum 3901
November 1985

P.F.Terry & S.R.Wiseman
On the Design and Implementation of a Secure Computer System
RSRE Memorandum 4188
June 1988

S.R. Wiseman
On the Garbage Collection of Block Structured Memories
RSRE Report 8S006
May 1985

S. R. Wiseman
A Secure Capability Computer System
Procs. 1986 IEEE Symp on Security and Privacy
Oakland CA., April 1986, pp86. .94

S. R. Wiseman
Protection and Security Mechanisms in the SMITE Capability Computer
RSRE Memorandum 4117
January 1988

S. R. Wiseman
The SMITE Object Oriented Backing Store
RSRE Memorandum 4147
March 1988

S.R. Wiseman
Garbage Collection in Distributed Systems
PhD Thesis, Univ. Newcastle upon Tyne
RSRE Report to appear 1989

S. R. Wiseman
SMITE on a Chip
RSRE Report to appear 1989

S. R. Wiseman
Causing and Preventing Viruses in Computer Systems
RSRE Report to appear 1989

S.R.Wiseman, P.F.Terry, A.W.Wood & C.L.Harrold
The Trusted Path between SMITE and the User
Procs. 1988 IEEE Symp on Security and Privacy
Oakland CA., April 1988, pp?47.. 155

J.P.L.Woodward
Exploiting the Dual Nature of Sensitivity Labels
Procs. 1987 IEEE Symp on Security and Privacy
Oakland CA., April 1987, pp23..30

Appendix A: The 2 Notation

In the following , x is an identifier, T is a type, P and 0 are predicates, S is a
set and R is a relation.

LHS a RHS LHS is syntactically equivalent to RHS
x : T declare x as type T
P A O PandO
PvO Por Q
P -0 P implies 0
x C S x is an element of set S
S I S2 set S, is included in set S2

{ the empty set
{xI, x 2. x} the set containing x1 x2 X,
P S powerset: the set of all subsets of S
S1 n S2 set intersection

SI U S2 set union

5 I SI 2 set difference

#5 size of finite set
T1 T T 2 the set of relations from T, to T2

T,- T2 the set of total functions from T. to T2

dom R the domain of a relation R
rng R the range of a relation R
R1 ;R 2 forward relational composition

R-1 inverse of a relation R
{a.b, c-d I.....} the relation mapping a to bp c to d.....
R(S) relational image of set S through relation R
S - R domain restriction of relation R to set S
S 4 R domain subtraction
S 1> R range restriction
S P R range subtraction

The schema notation is a way of grouping together some variable declarations
and a predicate that relates them.

EG This schema is called EG. It declares a variable x which is
F drawn from the set S and a function f, from S to S. The

x :S predicate states that x and f must be such that f maps x
f S -S to itself.

f(x =x

A schema may be included in the declarations of another, in which case the
declarations of the two schemas are merged together and the predicates are
conjoined.

OP Identifiers may be decorated. By convention a
dashed variable indicates the state of a variable

f, f' S --# S after an operation. Thus in the schema OP f' is
x, y :Sthe function resulting from changing f.

f' f a {C x

DOCUIENT CONTROL SHEET

Overall security classification of sheet AUNAC SASSIFIED

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter

classified information, the box concerned oust be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

Memorandum 4222 IClassification
_e__rand,,____I Unclassified

5. Originator's Code (if 6. Originator (Corporate Author) lame and Locaticn
known) Royal Signals and Radar Establishment

7784600 St Andrews Road, Malvern, Worcestershire WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

A SECURITY MODEL AND ITS IMPLEMENTATION

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

B. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pD. ref.

Wiseman S R Harrold C L 1988.9 35

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate Diece of paper

fbtract

A new security model is proposed which allows the notions of confidentiality and

integrity to be expressed in one coherent framework. Confidentiality is taken

to be solely concerned with the observation of classified information, while

separation of duty is employed as the technique for assuring the integrity of the

security labels which are the basis of confidentiality. Esscretionary access

control is modelled by access control lists whose integrity is also provided by

separation of duty controls. The specification of a simple system is given as

an example of the techniques and methods for implementation are discussed.

S80/48

